Java (embedded)
QuestDB is written in Java and can be used as any other Java library. Moreover, it is a single JAR with no additional dependencies.
To include QuestDB in your project, use the following:
- Maven
- Gradle
<dependency>
<groupId>org.questdb</groupId>
<artifactId>questdb</artifactId>
<version>8.0.1</version>
</dependency>
<dependency>
<groupId>org.questdb</groupId>
<artifactId>questdb</artifactId>
<version>8.0.1-jdk8</version>
</dependency>
implementation 'org.questdb:questdb:8.0.1'
implementation 'org.questdb:questdb:8.0.1-jdk8'
Writing data​
This section provides example codes to write data to WAL and non-WAL tables. See Write Ahead Log for details about the differences between WAL and non-WAL tables.
The following writers are available for data ingestion:
WalWriter
for WAL tablesTableWriter
for non-WAL tablesTableWriterAPI
for both WAL and non-WAL tables as it is an interface forWalWriter
andTable Writer
Writing data using WalWriter
​
The WalWriter
facilitates table writes to WAL tables. To successfully create
an instance of WalWriter
, the table must already exist.
final CairoConfiguration configuration = new DefaultCairoConfiguration("data_dir");
try (CairoEngine engine = new CairoEngine(configuration)) {
final SqlExecutionContext ctx = new SqlExecutionContextImpl(engine, 1)
.with(AllowAllSecurityContext.INSTANCE, null);
engine.ddl("CREATE TABLE testTable (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY WAL", ctx);
// write data into WAL
final TableToken tableToken = engine.getTableTokenIfExists("testTable");
try (WalWriter writer = engine.getWalWriter(tableToken)) {
for (int i = 0; i < 3; i++) {
TableWriter.Row row = writer.newRow(Os.currentTimeMicros());
row.putInt(0, 123);
row.putByte(1, (byte) 1111);
row.putShort(2, (short) 222);
row.putLong(3, 333);
row.putFloat(4, 4.44f);
row.putDouble(5, 5.55);
row.putDate(6, System.currentTimeMillis());
row.putSym(7, "xyz");
row.putStr(8, "abc");
row.putBool(9, true);
row.putGeoHash(10, GeoHashes.fromString("u33dr01d", 0, 8));
row.append();
}
writer.commit();
}
// apply WAL to the table
try (ApplyWal2TableJob walApplyJob = new ApplyWal2TableJob(engine, 1, 1)) {
while (walApplyJob.run(0)) ;
}
}
Writing data using TableWriter
​
Non-WAL tables do not allow concurrent writes via multiple interfaces. To successfully create an instance, the table must:
- Already exist
- Have no other open writers against it as the
TableWriter
constructor will attempt to obtain an exclusive cross-process lock on the table.
try (CairoEngine engine = new CairoEngine(configuration)) {
final SqlExecutionContext ctx = new SqlExecutionContextImpl(engine, 1)
.with(AllowAllSecurityContext.INSTANCE, null);
engine.ddl("CREATE TABLE testTable (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY BYPASS WAL", ctx);
// write data into WAL
final TableToken tableToken = engine.getTableTokenIfExists("testTable");
try (TableWriter writer = engine.getWriter(tableToken, "test")) {
for (int i = 0; i < 3; i++) {
TableWriter.Row row = writer.newRow(Os.currentTimeMicros());
row.putInt(0, 123);
row.putByte(1, (byte) 1111);
row.putShort(2, (short) 222);
row.putLong(3, 333);
row.putFloat(4, 4.44f);
row.putDouble(5, 5.55);
row.putDate(6, System.currentTimeMillis());
row.putSym(7, "xyz");
row.putStr(8, "abc");
row.putBool(9, true);
row.putGeoHash(10, GeoHashes.fromString("u33dr01d", 0, 8));
row.append();
}
writer.commit();
}
}
Writing data using TableWriterAPI
​
TableWriterAPI
allows writing to both WAL and non-WAL tables by returning the
suitable Writer
based on the table configurations. The table must already
exist:
try (CairoEngine engine = new CairoEngine(configuration)) {
final SqlExecutionContext ctx = new SqlExecutionContextImpl(engine, 1)
.with(AllowAllSecurityContext.INSTANCE, null);
engine.ddl("CREATE TABLE testTable (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY WAL", ctx);
// write data into WAL
final TableToken tableToken = engine.getTableTokenIfExists("testTable");
try (TableWriterAPI writer = engine.getTableWriterAPI(tableToken, "test")) {
for (int i = 0; i < 3; i++) {
TableWriter.Row row = writer.newRow(Os.currentTimeMicros());
row.putInt(0, 123);
row.putByte(1, (byte) 1111);
row.putShort(2, (short) 222);
row.putLong(3, 333);
row.putFloat(4, 4.44f);
row.putDouble(5, 5.55);
row.putDate(6, System.currentTimeMillis());
row.putSym(7, "xyz");
row.putStr(8, "abc");
row.putBool(9, true);
row.putGeoHash(10, GeoHashes.fromString("u33dr01d", 0, 8));
row.append();
}
writer.commit();
}
// apply WAL to the table
try (ApplyWal2TableJob walApplyJob = new ApplyWal2TableJob(engine, 1, 1)) {
while (walApplyJob.run(0)) ;
}
}
Detailed steps​
Configure Cairo engine​
CairoEngine
is the resource manager for the embedded QuestDB. Its main
function is to facilitate concurrent access to pools of TableReader
and
suitable writer instances.
final CairoConfiguration configuration = new DefaultCairoConfiguration("data_dir");
try (CairoEngine engine = new CairoEngine(configuration)) {
A typical application will need only one instance of CairoEngine
. This
instance will start when the application starts and shuts down when the
application closes. You will need to close CairoEngine
gracefully when the
application stops.
QuestDB provides a default configuration which only requires the data directory
to be specified. For a more advanced usage, the whole CairoConfiguration
interface can be overridden.
Create an instance of SqlExecutionContext​
Execution context is a conduit for passing SQL execution artifacts to the execution site. This instance is not thread-safe and it must not be shared between threads.
final SqlExecutionContext ctx = new SqlExecutionContextImpl(engine, 1)
.with(AllowAllSecurityContext.INSTANCE, null);
The second argument of the constructor is the number of threads that will be helping to execute SQL statements. Unless you are building another QuestDB server, this value should always be 1.
SqlCompiler and blank table​
Before we start writing data using a writer, the target table has to exist.
There are several ways to create a new table and we recommend using
CairoEngine
:
// Create a non-WAL table:
engine.ddl("CREATE TABLE abc (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY BYPASS WAL", ctx);
// Create a WAL table:
engine.ddl("CREATE TABLE abc (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY WAL", ctx);
As you will be able to see below, the table field types and indexes must match the code that is populating the table.
Another way to create a table is to obtain a SqlCompiler
from the engine and
use it to run the DDL statement:
try (SqlCompiler compiler = engine.getSqlCompiler()) {
engine.ddl(compiler, "CREATE TABLE abc (" +
"a int, b byte, c short, d long, e float, g double, h date, " +
"i symbol, j string, k boolean, l geohash(8c), ts timestamp" +
") TIMESTAMP(ts) PARTITION BY DAY WAL", ctx, null);
}
This way the obtained SqlCompiler
can be reused to run other SQL statements.
Note that CairoEngine
has a number of helper methods for different types of
SQL statements. These are:
CairoEngine#ddl()
- meant to execute CREATE TABLE and ALTER statements.CairoEngine#insert()
- meant to execute INSERT statements.CairoEngine#drop()
- meant to execute DROP TABLE statements.CairoEngine#select()
- meant to execute SELECT queries.
A new writer instance​
We use CairoEngine
to obtain an instance of the writer. This will enable
reusing this writer instance later, when we use the same method of creating
table writer again.
final TableToken tableToken = engine.getTableTokenIfExists("abc");
try (TableWriter writer = engine.getWriter(tableToken, "test")) {
final TableToken tableToken = engine.getTableTokenIfExists("abc");
try (WalWriter writer = engine.getWalWriter(tableToken)) {
final TableToken tableToken = engine.getTableTokenIfExists("abc");
try (TableWriterAPI writer = engine.getTableWriterAPI(tableToken, "test")) {
TableWriter
- A non-WAL table uses TableWriter
, which will hold an exclusive
lock on table abc
until it is closed and testing
will be used as the lock
reason. This lock is both intra- and inter-process. If you have two Java
applications accessing the same table only one will succeed at one time.
WalWriter
- A WAL table uses WalWriter
to enable concurrent data ingestion,
data modification, and schema changes, as the table is not locked.
TableWriterAPI
- Both WAL and Non-WAL tables can use TableWriterAPI
. It is
an interface implemented by both writers.
Note the all of the writer classes are not thread-safe, so they should not be used concurrently.
Create a new row​
TableWriter.Row row = writer.newRow(Os.currentTimeMicros());
Although this operation semantically looks like a new object creation, the row instance is actually being re-used under the hood. A timestamp is necessary to determine a partition for the new row. Its value has to be either increment or stay the same as the last row. When the table is not partitioned and does not have a designated timestamp column, the timestamp value can be omitted.
TableWriter.Row row = writer.newRow();
Populate columns​
There are put*
methods for every supported data type. Columns are updated by
an index as opposed to by name.
row.putLong(3, 333);
Column update order is not important and updates can be sparse. All unset columns will default to NULL values.
Append a row​
Following method call:
row.append();
Appended rows are not visible to readers until they are committed. An unneeded row can also be canceled if required.
row.cancel();
A pending row is automatically cancelled when writer.newRow()
is called.
Consider the following scenario:
TableWriter.Row row = writer.newRow(Os.currentTimeMicros());
row.putInt(0, 123);
row.putByte(1, (byte) 1111);
row.putShort(2, (short) 222);
row.putLong(3, 333);
row = writer.newRow(Os.currentTimeMicros());
...
Second newRow()
call would cancel all the updates to the row since the last
append()
.
Commit changes​
To make changes visible to readers, writer has to commit. writer.commit
does
this job. Unlike traditional SQL databases, the size of the transaction does not
matter. You can commit anything between 1 and 1 trillion rows. We also spent
considerable effort to ensure commit()
is lightweight. You can drip one row at
a time in applications that require such behaviour.
Note that WAL writer commits aren't immediately visible to readers. The
committed data becomes visible once it was applied by the ApplyWal2TableJob
job.
Executing queries​
We provide a single API for executing all kinds of SQL queries. The example below focuses on SELECT and how to fetch data from a cursor.
final CairoConfiguration configuration = new DefaultCairoConfiguration(temp.getRoot().getAbsolutePath());
try (CairoEngine engine = new CairoEngine(configuration)) {
final SqlExecutionContext ctx = new SqlExecutionContextImpl(engine, 1)
.with(AllowAllSecurityContext.INSTANCE, null);
try (RecordCursorFactory factory = engine.select("SELECT * FROM abc", ctx)) {
try (RecordCursor cursor = factory.getCursor(ctx)) {
final Record record = cursor.getRecord();
while (cursor.hasNext()) {
// access 'record' instance for field values
}
}
}
}
}
Detailed steps​
The steps to setup CairoEngine
, execution context and SqlCompiler
are the
same as those we explained in the sections. We will skip them here and focus on
fetching data.
Note the all of the classes described below are not thread-safe, so they should not be used concurrently.
RecordCursorFactory​
You can think of RecordCursorFactory
as a prepared statement. This is the
entity that holds SQL execution plan with all of the execution artefacts.
Factories are designed to be reused and we strongly encourage caching them. You
also need to make sure that you close factories explicitly when you no longer
need them. Failing to do so can cause memory and/or other resources leak.
RecordCursor​
This instance allows iterating over the dataset produced by SQL. Cursors are relatively short-lived and do not imply fetching all the data. Note that you have to close a cursor as soon as enough data is fetched ; the closing process can happen at any time.
Record​
This is cursor's data access API. Record instance is obtained from the cursor outside of the fetch loop.
final Record record = cursor.getRecord();
while (cursor.hasNext()) {
// access 'record' instance for field values
}
Record does not hold the data. Instead, it is an API to pull data when data is needed. Record instance remains the same while cursor goes over the data, making caching of records pointless.
InfluxDB Line Protocol client library​
We have Java Client Library to allow fast data ingestion.